
NASA-CR-192295 _--

Mission and Safety Critical (MASC)

k An EVA CS Simulation
.....with Nested Transactions

.... r

e.4
r_
O
N
I

re3

O_
Z

_

u_ O _

cO

e- ,.4
0

Proje c t Rep ort

David Auty

L

SofTech, Inc.
Colin Atkins0n

UHCL
Charlie Randall

GHG Corporation

Release 02:9//9_2

Cooperative Agreement NCC 9-16
Research Activity No. SE. 16

NASA Johnson Space Center

Information Systems Directorate

===== Information Technology Division

-: 0 0

. Research Instif_u(_e-fc)r_Computing and Information Systems

University of Houston-C/ear Lake

t
\

INTERIM REPORT: First complete draft

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and InformaUon Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology, needed forJSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to

conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines resources of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students

from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources of expertlse to conduct needed research. For example, UHCL

has entered into a special partnership with Texas A&M University to help

oversee RICIS research an-I education programs, while other research

organizations arc involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the compu Ling and informa-

t_ion sciences. RICIS, working jointly with its sponsors, advises on research

nceds, recommends princlpals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical results into the goals ofUHCL, NASA/dSC and industry.

RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Mr. David Auty of SofI'ech, Inc., Dr. Collin

Atkinson of UHCL and Mr. Charlie Randall of GHG Corporation. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center

and the University of Houston-Clear Lake. The NASA technical monitor for this

activity was Ernest M. Fridge III, Deputy Chief of the Software Technology Branch,

Information Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government

\

An EVACS Simulation with Nested Transactions

Project Report

Release 02

September, 1992

University of Houston, Clear Lake

RICIS Project No. SE.16

Name;

ID:

Date:

Status:

Derivation:

Author(s):

Remarks:

An EVACS Simulation with Nested Transactions

MISSION / Kernel Team / Project Deliverable (PD) / #103 / ver. 02

September, 1992

First complete draft

ver. 01 + revisions, missing sections, code revisions

David Auty (Sofrech), Colin Atkinson (UHCL), Charlie Randall (GHG)

\
\

An EVACS Simulation with Nested Transactions

Table of Contents

,

2.

o

t

5.

6.

Introduction...1

A Transaction Taxonomy and Overview ... 2
Actions

Transactions

Distirbuted Transaction

Nested Transactions

A Design for Transaction Support ... 5

Transaction Managers

Transaction Participants

Participant Entry Into a Transaction

Leaving a Transaction

The Evacs Application ... 7

Simulation Support ... 8

The Implementation's Use of Smalltalk .. 10

6.1 An Introduction to Smalltalk Windowing Mechanisms 10

The Model-Pane-Dispatcher Framework

The Sponsor-Dependents Relationship

The Changed-Update Behavior

The Pefform:(Selector) Mechanism

The Update-Perform:Name Behavior

The UserAction-Perform:ChangeSelector Behavior

The textDispatcher as Stream Coincidence

Putting it all together

6.2 The Evacs Simulafion's Use of Window Classes .. 13

The Smalltalk-V graphPane
The Smalltalk-V textPane

The Smalltalk-V button.Pane

Appendix A.: The EVACS Simulation in Smalltalk

MISSION iii

EVACS Simulation Report

Draft

9/16/92

An EVACS Simulation with Nested Transactions

1. Introduction

This report documents the EVACS Simulation with Nested Transactions, a recent effort of the MISSION

Kernel Team. The EVACS simulation is a simulation of some aspects of the Extra-Vehicular Activity

Control System, in particular, just the selection of communication frequencies. The simulation is a tool to

explore mission and safety critical (MASC) applications. For the purpose of this effort, its current

definition is quite narrow serving only as a starting point for prototyping purposes. (Note that EVACS

itself has been supplanted in a larger scenario of a lunar outpost with astronauts and a lunar rover). The

frequency selection scenario has been modified to embed its processing in nested transactions. Again as a

first step, only two aspects of transaction support have been implemented in this prototype: architecture

and state recovery. Issues of concurrency and distn"oution are yet to be addressed.

The simulation has been implemented in SmalltalZ It consists of three components:

• Simulation support code which provides the framework for initiating, interacting and tracing the

system.

• The EVACS application code itself, including its calls upon nested transaction support

• Transaction support code which implements the logic necessary for nested transactions.

MISSION 1 Draft

EVACS Simulation Report 9/16/92

2. A Transaction Taxonomy and Overview

Our understanding of transactions comes from a progressive set of definitions. It begins with a relatively

simple notion of actions and objects and adds complexity in several incremental steps.

Actions
An action is a hierarchical composition of primitives (reads 8, writes) that affects several "objects" and

preserves system consistency. In its simplest form, an action is simply a read or write primitive affecting

one object. Generally it consists of many reads and writes, affects many objects, and may be hierarchicaUy

composed of sub-actions. Since it only affects one object, a primitive action inherently preserves

consistency. More complex combinations of primitives must preserve an overall consistency of system state

to be properly considered as "actions".

An object, in this case, is a part of, or partition of, the total system state. In Moss's work this is primarily a

data item, but this concept of an object generalizes quite well to that of current object oriented definitions.

A system is conveniently considered to consist of a collection of cooperating objects, each with potentially

active and passive processing associated with them. An action is a unit of processing (a method or

procedure) which interacts with many objects and which preserves a measure of consistency through its

execution. Defining the measures of consistency, the steps which preserve consistency as well as the

combinations of steps which may violate consistency temporarily, is an essential part of reliable system

design.

Transactions

A transaction is an action which exhibits failure atomicity and serializability. These two constraints

provide the basis for constructing reliable systems out of multiple interacting actions. Failure atomicity

refers to the property of either completing successfully or having no effect at all. This implies in the case

of failure the restoration of objects which may have been altered during the transaction prior to the

detection of failure. In practice, this can be achieved in many ways. Moss describes two approaches as

recovery from saved state and recovery via undo's, and presents details for the first of these which we

will adopt. Maintaining recovery states is related to the technique of checkpointing known correct values

as a computation proceeds. Recovery states are maintained in secondary storage which, depending on

the degree of reliability required, may be itself duplicated or otherwise designed to maintain integrity

(elsewhere referred to as stable storage or permanent storage).

Serializability refers to the nature of interaction between multiple transactions which may begin execution

concurrently. If they are serializable, then one can establish after their completion a state which is

equivalent to that which would be arrived at through some serial execution of the transactions, i.e., there

is no significant interleaving of their execution which would corrupt system coherency. Stated another

way, actions are serializable if they incorporate some mechanism of coordination which prevents their

mutual corruption. Again this can be achieved in several ways. Moss defines two approaches as access

locking and timestamping with subsequent resolution. The approach we have taken uses access locking to

ensure that a proper ordering of execution is achieved.

Access locking for transaction serialization is an extension to the common rules of locking for concurrency

control. First note that we have chosen simple object reads and writes as primitives, thus the locking

rules are for read/write access control. A read request is granted if no write request has been granted. A

MISSION 2 Draft

EVACS Simulation Report 9/16/92

write request is granted if no other request, read or write, has been granted. Proper serializability

requires further that no granting of access is released until all access is released when the action

completes.

In summary, our definiton of transaction adds to the definition of actions the use of secondary storage to

implement failure atornicity (recovery from failures as if the transaction never executed) and specialized

object locking to ensure serializabihty, (that concurrent actions do not interfere).

Distirbuted Transaction

A distributed transaction is a transaction which effects multiple objects at multiple sites. It adds to the

paradigm of transaction processing the ability to handle independently fallable processors and failed

communications. Note that distribution of objects participating in a transactions does not require a change

or extension to our general definition of transactions, i.e., distributed transactions obey the same rules for

failure atomicity and serializability. Only the processing required to implement such transactions is

modified. The modification consists of the addition of a two-phase commit protocol to ensure that all

objects involved in the transaction are updated or reverted consistently.

The two-phase commit protocol requires that each participant object involved in the transaction first

prepare to commit and respond that it is in fact prepared. Following successful processing of the

preparation phase the transaction coordinator can logically toggle its own records to indicate commitment

and broadcast this to all participants in the commitment phase. In this way, prior to commitment any

participant not able to commit forces an abort. Following preparation all participants are able to fall

forward or backwards. It is the singular action of the coordinator which transitions the transaction to

commitment. Participants must then wait for the coordinator to signal which action they should take. In

this way, assuming all node failures are recovered, no inconsistency of commitment or failure of the

transaction can occur.

The Alpha kernel introduced, and we will assume for Mission as well, that all objects are truly

independent; objects and messages can fail even though no physical distribution or node failure is

involved. Thus, for the purposes of transaction procesing, each object essentially becomes its own "virtual

node". As a consequence of this perspective, any transaction requires the logic of distributed transactions

(i.e., two-phase commits). Each object must handle its own participation in the transaction (i.e., handle

enter_transaction, prepare to commit, complete_commit and abandon_transaction messages).

Nested Transactions

The final complexity which we add to this discussion is that of nested transactions. Nested transactions

add the same feature of heiarchicai composition as was defined for actions, allowing nested actions to be

defined as nested transactions. The advantage of nested transactions is the partitioning of work being

done which may require retries or alternative processing in the face of failure. If all processing which

must commit or fail together must be executed as a single transaction, then failure requires reprocessing of

the entire transaction. If instead the processing is broken into several sub-transactions, then failure of one

sub-transaction can be handled independently of the other sub-transactions before signalling failure of the

entire transaction. We still have the property that ff the top-level transaction fails then all participants

are restored as ff no processing occurred, and we have the same property for the sub-transactions which

allows for consistency of recovery within the transaction as well.

MISSION 3 Draft

EVACS Simulation Report 9/16/9 2

Theintroductionofnestedtransactionsaltersthegeneralhandlingoftransactionsin twoways.First,the
objectlockingrulesmustbe modifiedto ensurepropercoordinationthroughoutthetransactionand
within thetransaction.Secondly,recoveryof nestedtransactionsrequiresessentiallyastackof recovery
valuesbeingkept.

Thefirst changeto the objectlockingrulesrelatesto thehandlingof subtransactioncompletion.In
normaltransactionprocessingall objectaccessrequiredby thetransactionis helduntil thetransaction
completes,andis thenreleased.In thecaseof asubtransaction,theaccessrestrictionmustbehelduntil
theentiretop-leveltransactioncompletes.This is handledby passingthe objectlock to the parent
transactionfor it to holduntil completion.Theparentmaythenpassthelockto its parent,if present,
andsoonuntil thetop-leveltransactionisreached.

Thesecondchangeto theobjectlockingrulesrelatesto thegrantingof access.Again,normaltransaction
accessrulesaddress"peer"leveltransactionsattemptingto accessthesameobject.A spedal case exists if

a subtransaction attempts to access an object which has already been accessed within a superior (e.g.

parent) transaction. This can occur in two ways. k may be (a) that the object is required directly by a

superior transaction and by the subtransaction, or it may be (b) that the object was required for a previous

subtransaction. Case (a) is a difficult situation since it is not clear whether the superior transaction has

completed its access in a consistent way at the time of the subtransaction's request for access.

Unfortunately it is difficult to distinguish at runtime case (a) from case Co). Thus it is left either as a

constraint on the programmer, as a constraint of the language, or to other pre-runtime controls not to

implement case (a).

Case Co) is actually quite normal and acceptable. It requires, however, that the locking rules be defined to

accomodate it. Note that at the end of the first subtransaction the object lock was passed up to the parent

transaction. Thus when, during the second subtransaction, access to the object is requested it should be

granted based on the possession of the lock by the parent. Generalized, the locking rules are modified to:

• allow read access if all transactions holding a write lock are superiors of the subtransaction

making the request, and

• allow write access if all transactions holding a lock in any mode are superiors of the

subtransaction making the request.

The last note on nested transactions addresses the multiple levels of recovery required. For single level

transactions a single recovery state is necessary for restoration if necessary. In the case of nested

transactions, an object may be involved in several levels of nested transactions, e.g., case CO) just

described. In fact, the rules of transaction participation and object locking prevent an object from

participating in multiple transactions except when nested. Because of the possibility of being involved in

transactions at multiple levels, a recovery state is necessary for the outer-most transaction level an object

participates in as well as for the nested levels. An object may need to recover from a subtransaction

failure prior to recovery from the parent transaction failure. A basic stack of recovery states meets this

requirement.

MISSION 4 Draft

EVACS Simulation Report 9/16/92

3. A D_i_n for Transaction SUpport

Our transaction design is based on two class definitions; objects of interest are either transaction managers

or transaction participants. The application itself is defined as objects which inherit from the transaction

participant class. This implies every application class is a subclass of the transaction participant class.

Note that the design was conceived with the idea in mind to eventually merge transaction semantics into

the programming language itself. As a consequence and in consideration of existing languages, it assumes

a reasonable transformation of a "naive" application to one which incorporates transaction processing.

Transaction managers are defined to coordinate transaction participants and any subtransactions which

are defined. Other than keeping a record of these participants and subtransactions, transaction managers

are principally responsible for implementing the coordinator logic of two-phase commits as was described
earlier.

Transaction participants are defined to participate in transactions and, in particular, potentially nested

transactions. Transaction participants are responsible for saving their current state, maintaining a stack of

recovery states (in stable storage which can survive system crashes) and for properly responding to the

various method calls associated with transactions: enter, prepare_commit, complete_commit and

abandon transaction.
w

The full processing of distributed nested transactions is incorporated into the definitions of these two

object classes. This functionality includes two-phase commit, uniform recovery, concurrency control (lock

management), lost-participant and manager recovery and schedulability / deadlock resolution. Only the

general architecture and recovery processing are discussed here.

Transaction Managers

The treatment of nested transactions deserves some special comment here. Our implementation of the

transaction manager accommodates the situation of being nested within another transaction, but in

general defines the processing to be identical for a sub-transaction as for a top-level transaction. This is

possible partly because the treatment of state saving and recovery is handled by the participants. The

singular addition required of a nested transaction manager is the passing of the participants list to the

parent transaction manager.

Transaction Participants

Our design focuses more processing on the transaction participant. In particular, it is left to the

participant to implement its own methods for saving and restoring its state. The transaction manager

coordinates processing by issuing prepare to commit, complete_commitment or abandon_transaction

commands, but does not receive or transmit participant states. Each participant thus keeps its own

recovery stack.

A particularly significant aspect of the design is the dynamic nature of object participation. Objects

participate in transactions when they are called without any predefined list of participants being given to

MISSION 5 Draft

EVACS Simulation Report 9/16/92

thetransactionmanagerin advance.Theprocessofenteringintoatransactionoccursasapartof calling
anobject. Prior to initiating theparticularmethodof thecall, the generaltransactionentrycodeis
executed.Onceentered,theobjectisaparticipantuntil theendof thetransaction.Thecorresponding
processingforleavingatransactionoccursattransactioncommitmentorabort.

partigjpant Entry Into a Transaction

Entering a transaction generally requires the saving of the current state of the object as a new entry on

the recovery stack and notifying the transaction manager of the new participant. This is only done,

however, if the object has not already participated in this transaction. The recovery state must always be

the state of the object before any involvement in the transaction. To insure the recovery state is saved

only once, a record is kept of the current transaction by each object. Thus as a part of transaction entry a

comparison is made between the calling transaction and the current transaction. Only if they are

different (the calling transaction is a subtransaction of the current transaction) is the state saved.

Leavijag _ Trartsaction

As was noted already, an object leaves a transaction at the time of transaction commitment or abort.

Leaving a transaction implies poping the stack of recovery states. If the transaction commits the recovery

value is tossed away. If the transaction aborts, the object assumes the recovery state as its current state,

abandoning its previous current state.

There is a special case of leaving a nested transaction. If the transaction being left is nested (has a

parent), then the object must be entered into the parent transaction. Again an entry check is made if the

object had previous participated in the parent transaction. If this is the case then no further action

should be taken. The object already has a recovery value from its earlier participation in the parent

transaction on the stack which was made current when the subtransaction's recovery stack was popped.

If the object had not previously participated in the parent transaction (the subtransaction was first to call

upon the object) then an entry into the parent must take place. Note, however, that the recovery state to

be pushed on the stack is the state of the object before its involvement in the subtransaction. This is the

recovery value normally popped upon leaving the transaction. In fact, the recovery state needn't be

popped at all (only to be pushed again), the recovery value can simply be left in place.

This processing ensures that all participants are kept in synchrony with the nesting of transactions which

they are involved in. The recovery stack is not necessarily as deep as the nesting of transactions because

the participants may not be entered into parent transactions until after a subtransaction commits or aborts.

The process of being entered into the parent transaction as a part of leaving a nested transaction ensures

that the proper set of recovery values is being maintained for each participant.

MISSION 6 Draft

EVACS Simulation Report 9/16/92

4. The Evacs Av_lication

Emphasis has been placed on the construction of a simulation which illustrates the value of distributed

nested transactions in a scenario of interest to NASA. The system which was eventuaUy adopted is a

simplified version of the type of system which will be required to monitor extra vehicular activities by

astronauts from the future space station. We have chosen to call this the "Extra Vehicular Activity Control

System" or EVACS for short. For the purpose of demonstrating DNTs we focus on a particular subsystem of

the EVACS which is responsible for maintaining communication between astronauts and the space station.

This is achieved through a highly simplified model, which is not intended to provide a realistic

simulation of space station communications.

Communication between the astronauts and the space station is assumed to be via radio. Since astronauts

may move freely around the space station, it is necessary to have several antennas, an transmitting the

same signal, distributed around the exterior of the station. This ensures that no regions around the

station will be cut from the radio signals. Each antenna is assumed to be controlled by an independent

antenna software module.

Astronauts maneuver around the space station with the aided of a special "back-pack" known as a

Manned Maneuvering Unit (MMU). This is assumed to contain a microprocessor running a software

module which, in addition to monitoring the environment within the space suit and responding to the

astronaut's commands, is responsible for maintaining appropriate communication channels with the space

station. The final software object in the system is the central control unit, which is located at the central

computing site on the space station, and is responsible for providing an interface to human monitors and

controllers of the system.

For the purposes of communication, each active MMU is allocated a unique frequency. When a message

needs to be transmitted from the station to an MMU, all antennas will simultaneously broadcast the

message at the appropriate frequency. It is crucial therefore, that all the antennas, as well as each MMU,

know and agree upon the frequency allocation. Should a mismatch arise for any reason, communication

will be permanently lost, with no prospect of recovery.

Distributed Nested Transactions become of value when we consider the problem of changing the

frequency allocated to a currently active MMU. There may be several reasons why such a change may be

necessary. Perhaps a solar radiation burst is expected at that frequency, or interference is experienced

from a piece of equipment. Assuming such a change is required, the main challenge is to perform the

change in such a way that the system is not left in an inconsistent state as a result of some failure.

Without DNTs there would be a real danger of this, since the job of updating the frequency involves

updates to several independent objects. To guard against this possibility therefore, the change frequency

operation is programmed as a distributed nested transaction.

The top-level transaction assumed to be an operation of the central control unit, which is responsible for

determining when a change is required and what the new frequency should be. Usually the human

operator will enter this information. The Central Control Unit is then responsible for informing each of

the antennas and the MMU concerned and passing the appropriate information.

MISSION 7 Draft

EVACS Simulation Report 9/16/92

_. Simulation SuuDort

The Smalltalk simulation draws upon several class definitions which provide simulation support.

category of simulation support includes:
• simulation startup,
• fauk simulation (failure of objects involved in transactions)
• input events & parameterization (frequency selection)
• an active display of simulation objects
• an activity log.

These will be discussed in order.

The

The simulation startup (class Evacs) creates and initializes the top-level simulation objects. These objects

are the simulation window (SimWindow), the central controller and a fixed number of MMUs (3). In

general, initialization consits of linking each of these objects to each other Coi-directionally), except that

the SimWindow does not requrire reference to the MMUs. Links are established from:
• the simWindow to the central controller,
• the MMUs to the simWindow and central controller, and
• the central controller to the simWindow.

The MMUs then register themselves with the central controller completing the link from central controller

to MMUs. Once these objects are created and linked by initialization code the simulation is ready for

execution. It will remain idle, though, until the user initiates an input event.

Fault simulation is an essential element of the simulation in order to exercise and demonstrate the details

of transaction processing. Fault simulation is handled through specific evaluation of the frequency

selected by the user. As part of transaction processing, each object participating in a transaction evaluates

a function that determines the success or failure of that participant's involvement in the transaction. For

our simulation, this function looks at the frequency selected and evalutates success or failure based on the

frequency value. In particular, each participant class looks at a specific digit of the frequency for its

evaluation. In general, a digit less than five generates success while digits five and greater generate

failure. Thus frequencies like 111 and 222 are processed without failure, while 911, 191 and 119 each

generate a failure in different classes in the system.

Processing within the simulation is driven by user initiated input events. Currently the simulation

provides only the one event: change frequency for MMU #1. This event is in fact initiated by the user's

clicking on one of two buttons. The processing for these buttons differ only in how the event is

parameterized, i.e., how the user designates what the new frequency is to be. The change frequency

event is also parameterized in terms of the simulation mode of operation as follows:

• proper: the simulation will treat sub-transaction failure as would be expected of the scenario

being simulated; any sub-transaction failure will lead to the failure of the parent transaction,

• improper: the simultation will ignore sub-transaction failure in determining the success or failure

of the parent transaction. While not realistic in terms of what would be expected for this

scenario, improper behavior demonstrates more fully the nature of system-level nested transaction

support.

• tough_case: this mode of behavior is an exageration of improper behavior in order to

demonstrate a particulalry difficult aspect of nested transaction support. (See description

following).

MISSION 8 Draft

EVACS Simulation Report 9/16/92

The window panes (a rectangular region of the window) required to support this one event and its

parameterization include a button-pane with two push-buttons (non-persistent selection) for event

initiation, a button-pane with three radio buttons (only one selected at a time) for mode selection and a

text-pane for display of typical frequencies which the user can select from. The two event initiation

buttons allow either frequency selection in the text-pane prior to button-pressing or frequency input to a

promptor-window (dialog box in Macintosh lingo) following button-pressing.

The last two simulation support elements are provided in two output window panes: the simulation

display (active display) and activity log. The simulation display is a graphic display containing rectangles

on the scren for each of the principle simulation elements (central controller, antennas, antenna manager,

and MMUs). Each rectangle has the object's name and its current frequency. As the change frequency

event is processed, the user can see the objects' frequendes change.

The activity log is a simple text-pane with messages added throughout simulation processing. The

messages include frequency change initiation, specific object frequency changes, transaction irritation and

transaction success/failure indications.

MISSION 9 Draft

EVACS Simulation Report 9/16/92

6. The Imolementation's Use of SmaIltalk

The simulation was implemented in Smalltalk for two reasons: it is an object oriented language and it

provides significant rapid-prototyping support. For this simulation extensive use was made of pre-

defined classes, including:
• object aggreagtions or collections: Dictionaries, Sets and Stacks,
• graphic display: Pen and GraphPane,
• the TextPane and TextEditor,
• the ButtonPane for initiating and parameterizing the user's change frequency request, and
• the Prompter class for putting up dialog boxes for the user.

In particular, however, it is likely that the Smailtalk windowing classes need additional discussion to

clarify their processing.

_.1 An IntrodlAction to Sma,ll_lk Windowing Mechanisms

In general, the inteface between the window pane classes and the application is defined by three

standard behaviors: changed-update, update-perform:name and user_action-perform:changeSelector

described below. Note, however, that each subPane class elaborates and extends upon these standard

protocols.

The Model-Pane-Disoatcher Framework

All predefined windowing classes in Smalltaik-V fit into the model-pane-dispatcher framework of inter-

related objects. (Smalltalk-V is referenced here in place of the more general Smalltalk becaused of its

unique handling of windowing). This corresponds directly to the original model-view-controller

framework of SmaUtalk-80, but the names are changed to reflect the significant modifications made in

adapting the framework to the various Smalltalk-V platforms.

Each region of a window is handled by a Pane object. User interactions with this region (keystorkes,

mouse clicks & drags, menu selections, etc.) are handled by a corresponding Dispatcher object. Both

these objects are created by and interact with the model object. The richness of predef'med windowing

classes allows users to write simple model classes for their application and leave the compllexities of

windowing to the predefmed classes. The model object interacts primarily with the pane object and this

will be the focus of the remaining discussion. Pane objects have their own interaction with the dispatcher

objects but these details are not necessary to an understanding of how to use them.

The Spor_or-Dependents Relationship

The relationship established between model and pane objects is a classic Smalltalk relationship, that of

sponsor and dependents. The sponsor-dependent relationship is built into the Object class itself and is

thus available throughout Smalltalk applications. It has specific relevance here. Any object may establish

itself as a sponsor object which can adopt any number of dependents (a one to many relationship). The

Object instance method addDependent: takes the dependent object as parameter and adds it to the

dependents collection for the receiving object. When told which object is their sponsor (i.e., their model),

pane objects add themselves as dependents to that sponsor.

MISSION I0 Draft

EVACS Simulation Report 9/16/92

The Changed-Update Behavior

The Object class implements a number of methods which make specific reference to the dependents

collection. Chief amongst these is the changed method. When an object is called with the changed

message, the object itseLf may take no internal action, but each dependent in the dependents collection is

called with the update message. Thus without having to explicitly keep track of dependents, a sponsor

object can signal its dependents that processing is due.

The changed-update behavior is a convenient mechanism for coordination between sponsors and

dependents and it forms a base for interactions between models and panes. Whether or not the changed

method is used, pane objects must implement the update method for the purpose of responding to the

changes in the model. In fact, in the Evacs simulation, the update method of one pane is called directly

by the model in recognition of the fact that only a specific pane update is appropriate to the application.

The changed mechanism is not used but the changed-update paradigm is none-the-less depended upon.

The Perform:(S¢lector) Mechanism

The changed-update behavior is the basic mechanism for providIng output through windows. Whenever

the output is to change, the changed method or specifc update methods must be called for the changes to

seen. In the Evacs application, as object frequencies change the model object is notified (SimDisplay) and

the corresponding display pane is called with the udpdate message.

Another SmaUtalk mechanism is needed, however, to complete the output processing and to provide for

user-interaction as input. The problem for output is passing to the pane object the data which is being

displayed by that pane which presumably has changed. If it were always the case that output changes

were initiated by the model object itself, then passing the changed data along with the update message

would appear to be the most obvious solution to this problem. In practice, however, the model may want

to udpate all dependent panes through the changed-update mechanism, and it may not be the case that

the model object itseLf initiated the output-changed request. It turns out to be much more convenient for

the pane to request the necessary information from the model whenever needed.

The perform: (selector) mechanism was adopted for the implementation of the pre-defined window classes

whenever the pane needs to call out to the model. While the sponsor-dependents framework was a

natural one for establishing a general protocol for the model's references to the pane, the

perform: (selector) mechansim provides a more flexible approach for the pane's references to the model.

Again this mechanism is built into the Object class. The Object class implements the perform method, in

which the name of the method to be called is passed as parameter. A method name is called a selector in

Smalitalk in reference to the selection of one of a number of methods when calling an object.

In the case of the model-pane relationship, the pane is given reference to its model-as-sponsor object and

one or more symbol values which are method selectors for the model. The pane object can then invoke

the model at any time with the perform message and an appropriate selector. There are two conventions

for using this mechanism: the update-perform:name behavior for output and the user_action-

perform:changeSelector behavior for Input.

MISSION 11 Draft

EVACS Simulation Report 9/16/92

The Ug,:late-Perform:Name Behavior

To complete the description of output processing, we have a potentially three-tiered behavior in which

the model is called with the changed message, the pane is called with the update message, and the pane

uses the perform:name mechanism to call the model for the data which is to be displayed. Within the

pane object the symbol for this last call back to the model is kept in the named instance variable name.,

thus the title update-perform:name. (I would like to hereby note my preference for the more mnemonic

instance variable name displayDataSelector, but I wasn't asked). Name: is also the name of the method

which receives this selector for the pane. Note, of course, that the data required depends entirely on the

nature of the pane class definition. Thus this general protocol has "strings attached" in the sense that by

convention the model always passes in a name selector, but its implementation must return a pane-

specific data item for the pane to continue properly. Two different cases of its use are discussed in the

next section.

Thg UserAction-Perform:Cha!ageSelector Behavior

The perform: (selector) mechansim is equally essential for user-interaction as input to the model. While

there are many interactions possible and complex processing is required on the part of dispatchers, it all

boils down to some user-interaction, filtered through the dispatcher and window-pane, to be signalled

back to the model as a change. (Note that the normal changed-update behavior is from the model to the

pane). The general mechanism for this is the perform:changeSelector. Again, the instance variable name

used within the pane is changeSelector which must have been set to a method name of the model during

initialization. This general behavior also has "strings attached" in the sense that whle all panes use the

same convention, they likely will require a method which accepts a pane-specific parameter or two and

can process them accordingly. Further, different pane classes may choose to supplement this mechanism

with more direct calls to the model if it does not supply a changeSelector method.

The textDispatcher as Stream Coincidence

While in general it is not necessary to understand the details of the dispatcher and its interaction with

the corresponding pane, in the case of the textDispatcher it is conincidentally more convenient for the

model to call the dispatcher for some output rather than the textPane. This is the consequence of the

general nature of the update-perform:name mechanism and the interface provided for the

textDispatcher's own processing. In general the update-perform:name mechanism expects the model to

reply with the new data to be displayed. For the textPane this would be a text string. Indeed if the

intention is to provide the entire string to be displayed then this mechanism should be used. Often,

however, the intention is to add text to a scrolling window of text without replacing what is there, as is

the case of the message log in the Evacs simulation. In this case the update-perform:name mechanism

cannot be used.

The textDispatcher class definition is actually named textEditor due to its involved user interface. The

textEditor allows users to select, cut and paste in the text pane, all without the model having to define

the underlying implementation. Perhaps surprisingly, the model is not even informed of this interaction.

It requires a supplemental user interaction to signal the model that processing is expected, at which point

the model can query for selected or changed text. If nothing else, SmaUtalk provides the standard save

menu item wihch is interpreted by the textEditor and the associated textPane as the occasion for invoking

the change selector of the model.

MISSION 12 Draft

EVACS Simulation Report 9/16/92

Thusit is thetextEditorwhich incorporatesmethodsto addtext to thecurrentdisplaystring. These
methodswerechosento matcha standard protocol in Smalltallq the protocol found in the Stream object

class, a sub-class of Collection. A stream is a collection of items (characters in this case) which may be

bounded or unbounded, but which have a current position attribute which allows get and put operations

without reference to location (the current position is used). Additional methods may be used to change

the current location, such as top, bottom, and locate. To add a string to the display text of a particular

textPane, the expression (textEditor nextPutAlh string) is used, where textEditor is the textPane's

associated Dispatcher.

Putting_ it all together

The only required window parameter which we have not discussed is the specification of the particular

region of the window which a pane is to handle. This is commonly done by a defining a fractional

rectangle which frames a region within a 1X1 window. This is used to scale the window's frame to that of

the pane. The given rectangle is called the framingRatio. While other options exist, these are left as

advanced topics for discussion elsewhere.

For an output pane, the necessary parameters then are the framingRatio, the model object (typically self

for the creating object) and the "name" selector which when called will provide the pane's output data.

For an input pane, the necessary parameters are the framingRatio, the model, and the changeSelector. A

pane which serve for both input and output, such as textPanes, may require both the name and

changeSelector. Each Pane subclass expects these parameters before being opened. Note, however, that

each sub-Pane class defiition adds its own requirements and its own interpretation of the general

protocol.

6.2 The Ev_¢_ Simuladon's Use of Window Classes

As was noted earlier, the Evacs Simulation uses three different window classes (panes): the graphPane,

textPane and buttonPane.

The Smalltalk-V _aohPane

The Smalltalk-V graphPane is used for output display in the Evacs Simulation. The graphPane itself is

quite simple as an output Pane. Its implementation of the update method passes to the "named" method

of the model the actual size of the pane's window-area and expects back a filled in display form. In the

Evacs Simulation, this is provided by the displaySim method (name => #displaySim) and the

displayNode objects which know how to draw themselves given a "pen" associated with the display form.

The management of multiple displayNode objects is handled by the SimDisplay object which serves as the

sponsor/model for the graphPane.

The Smalltalk-V textPane

The Smalltalk-V textPane is used both for message output and frequency input. In both cases a model,

framingRatio and name selector are provided as paramenters. In neither case is a change selector

provided since the save menu item is not used for controlling the simulation.

MISSION 13 Draft

EVACS Simulation Report 9/16/92

Forthemessagepane,the SimWindowobjectitselfservesassponsor/model.A trivial methodwhich
returnsthe nullstringservesasthenameselector.It is necessaryas it iscalledasa partof theopen
processingof atextpane,although,in thiscasenoinitial textis to bedisplayed.Followingthis initial
call it wouldonlybecalledaspartofthesavemenuitemprocessing,exceptthatthishasbeendisabled.
Immediatelyfollowingcreation,theSimWindowobjectcallsfor themessagepane'sassociatedtextEditor
whichis thenusedasastreamforsubsequentmessageoutoperations.

For the input pane, a separate Simlnput object serves as sponsor/model. The static text, which the user

can select within, is supplied by the method given as the name selector (defaultlnput). A pane specific

method defined for textPanes, selectedString, is called upon to retrieve the selected text. This is done

when the ChangeFreq button is pushed as described below.

The Smalltalk-V buttonPane

The Smalltalk-V buttonPane is used in two places in the input area of the SimWindow. The Simlnput

object mentioned above serves as sponsor/model. For button panes, no name selector is needed since

they serve only as input panes. In practice, the change selector is not needed for button panes and it also

is not provided here. Instead, the implicit method name buttonPressed is implemented in SimInput. A

buttonPane without a changeSelector attempts to call this method name directly whenever a button is

pressed. The same buttonPressed method serves both button panes. An additional required parameter

for button panes is the list of button names. These button names are used when a button is pressed as a

parameter to the buttonPressed method to indicate which button was pressed. The button pane

implementation is smart enough to take the size of the button names list as the number of buttons to

create within the pane's area, to size each appropriately and to display each with its name centered

inside.

Two optional parameters to button panes are used alternately on the two button pane instances in

Simlnput. For the event initiation buttons, a parameter is passed to indicate "push-button" behavior is

desired. When this is specified, pushing a button is a non-persistent event, i.e., the button is not

"selected". Selection on pressing is the standard behavior for button panes. This is the desired behavior

for the mode selection butons, so this optional parameter is omitted. Note, however, that when multiple

buttons are specified for a single button pane, selection on pressing means deselection of the previously

selected button. This is termed "radio-button" behavior. Selective buttons which do not interact with each

other require separate button panes. The additional parameter required for the mode selection button

pane is the indication of which button is to be initially selected.

MISSION 14 Draft

EVACS Simulation Report 9/16/92

Evacs Simulation in SmallTalk

Application : EVACS Simulation -- includes transaction support

A simulation of some aspects of the Extra-Vehicular Activity Control System (EVACS). In

particular, this simulation looks only at the interaction between a central controller and a set

of manned manuvering uints (MMUs), and more specifically at the selection of communication

frequencies. The simulation has been extended to implement frequency changes as a set of nested

transactions. Changes must uniformly affect both base station antennas and the MMUs. Different

scenarios of transaction success and failure can be run by having different subtransactions of

the scenario succeed or fail.

The simulation allows user control by the choice of frequency. Each digit of the three digit

frequency controls one of the elements in the simulation and the subtransactions it participates

in. In general values less than 5 succeed while values 5 or greater fail.

Digit I affects the central controller.

Digit 2 affects the MMU.

Digit 3 affects the antenna manager.

Digit 4 controls the antenna array.

For example:

llllHz is complete success,

9111Hz is failure only of the central controller (root transaction)

Classes : EvacsRoot

Checkpointable TransactionManager

TransactionParticipant

Evacs

SimWindow SimNodes SimDisplay

CentralController MMU AntennaMgr

EvacsStack TextDisplayer TextDisplayPane

Example : (Evacs new) start.

Simlnput

Antenna

Classes are grouped into three categories:

Transaction support,

Simulation support, and

Evacs application definition.

Classes definitions are presented in this order (compilation order), then the class and instance

method definitions in the approximate order:

Simulation support, Evacs application definition. Transaction support

which more closely presents the methods top-down in order of exection

,,!

MISSION A-1 Draft

v.9 September16, 1992

EVACS Simulation in Smalltalk

(Class Definitions)

" Transaction Support Classes " !

Object subclass: #EvacsRoot

instanceVariableNames: -

classVariableNames: " pooIDictionaries: -

" an empty class, no protocol or representation

collects subclasses into one parent

" !

EvacsRoot subclass: #TransactionManager

instanceVariableNames: 'id participants status

transactionHierarchy subTs '

classVariableNames: " pooIDictionaries: -

" serves to coordinate transaction 2-phase commit and abort

Class Methods

runAsNewTransaction:id:parent:receiver:

Instance Methods

initWithID:, setParents:, processingComplete, abort,

registerParticipant:, inheritParticipants:, registerSubTransaction:,

transactionHierarchy, status

" !

EvacsRoot subclass: Y_heckpointable

instanceVariableNames: ' currentState recoveryStack visibleState'

classVariableNames: '° poolDictionaries: -

" provides facility for saving an object's state & recovery states

Class Methods

new

Instance Methods

init, pushCheckpoint,

saveCurrent,

" !

restoreCheckpoint, discardCheckpoint,

restoreCurrent

Checkpointable subclass: #TransactionParticipant

instanceVariableNames: 'currentTMs status '

classVariableNames:

= provides protocol

transaction

Class Methods

new

Instance Methods

init, addState:,

,,1

" poolDictionaries: -

and representation for objects which participate in

restoreState:, prepared

enter:, prepareCommitment, completeCommitment. abandonTransaction

MISSION

v.9

A-2 Draft

September 16, 1992

" Simulation Support Classes "

EVACS Simulation in Smalltalk

(Class Definitions)

OrderedCollection subclass: #EvacsStack

instanceVariableNames: " classVariableNames: " pooIDictionaries: -

" subset of and renaming of orderedCollection methods, no new representation

Class Methods (none)

Instance Methods

push:, pop, pushAll:, readTop

"

TransactionParticipant subclass: #Evacs

instanceVariableNames: 'simWindow controller '

classVariableNames: " pooIDictionaries: -

" Collects subclasses into parent. Defines shared representation

(all subclasses get a reference to simWindow and controller).

Defines method to initiate a simulation (start)

All subclasses are potential transaction participants

" I

TextEdi tor subclass : #TextDi splayer

instanceVariableNames: " classVariableNames: " pooIDictionaries:

" modified TextPane dispatcher, method modify always returns false

(closing will not ask to have changes saved), no other changes
u

TextPane subclass: #TextDisplayPane

instanceVariableNames: " classVariableNames: " pooIDictionaries:

" modified TextPane. defaultDispatcherClass returns TextDisplayer

no other changes

- !

MISSION A-3

v.9

Draft

September 16, 1992

EVACS Simulation in Smalltalk

(Class Definitions)

" Simulation Support Classes " !

Evacs subclass: #SimWindow

instanceVariableNames: 'topPane simDisplay simlnput

msgStream crPrinted '

classVariableNames: " pooIDictionaries: "

" Provides the display and interaction model for the simulation.

Creates the window; calls upon clients for display and interaction.

Handles message pane itself

Class Methods

new

Instance Methods

init,

addMMU:,

nulIMsg.

antennaFreq:,

. !

openWith:,

simMode,

logText:, logNoCr:,

controllerFreq:, antennaMgrFreq:, anMMUFreq:

Evacs subclass: #SimDisplay

instanceVariableNames: 'displayPane displayForm mmuCnt simNodes '

classVariableNames: " pooIDictionaries: -

" Handles display pane of simWindow, showing key simulation objects and their

status. Uses SimNodes to handle multiple display objects

Class Methods (none)

Instance Methods

initWith:, addMMU, openWith:, update:with:, displaySim:

- !

Evacs subclass: #SimNode

instanceVariableNames: 'name freq locateBlock '

classVariableNames: " poolDictionaries: ""

" captures information about and draws nodes for SimWindow's displayPane

Class Methods (none)

Instance Methods

name:, freq:, locate:, drawUsing:font:

- !

Evacs subclass: #Simlnput

instanceVariableNames: 'inputPane modePane doitPane simMode '

classVariableNames: " pooIDictionaries: -

" Handles input text and button panes of window, providing user control

over simulation

Class Methods (none)

Instance Methods

openWIth:andController:andSimWindow, defaultlnput, calIController:,

buttonPressed:, ChangeFreq, Prompt, Proper. Improper, ToughCase, mode

- [

MISSION A-4

v.9

Draft

September 16, 1992

EVACS Simulation in Smalltalk

(Class Def'mitions)

" EVACS application classes "

Evacs subclass: Y_entralController

instanceVariableNames: 'mmuArray antennaMgr frequency mmusCount success'

classVariableNames: " poolDictionaries: -

" models the central controller (at base station) for the Evacs application

Class Methods (none)

Instance Methods

setMaxMMUs:andSimWindow:, currentState, setStateTo:, prepared.

registerMMU:, changeFreq:

- [

Evacs subclass: #MMU

instanceVariableNames: 'frequency number '

classVariableNames: " poolDictionaries: -

" models behavior of an independent Manned Manuvering Unit

Class Methods (none)

Instance Methods

setController:andSimWindow:, currentState, setStateTo:.

changeFrequencyTo:
II |

prepared.

Evacs subclass: #AntennaMgr

instanceVariableNames: 'antennaArray frequencyArray success'

classVariableNames: " poolDictionaries: -

" coordinates a collection of three antennas at the base station

Class Methods

newWith:

Instance Methods

setSimWindow:andMaxMMUs:, antennaArray

currentState, setStateTo:, prepared, changeAntennasTo:

" !

Evacs subclass: #Antenna

instanceVariableNames: 'frequencyArray antNum '

classVariableNames: " pooIDictionaries: "' [

" models behavior of an independent antenna at the base station

Class Methods (none)

Instance Methods

setMaxMMUs:andSimWindow:.

currentState, setStateTo:, prepared, changeFrequencyOfMMU:

. !

MISSION A-5

v.9

Draft

September 16, 1992

EVACS Simulation in Smalltalk

(Simulation Support

LEvacs class methods L !

LEvacs methods L

" Collects subclasses into parent. Defines shared representation

(all subclasses get a reference to simWindow and controller).

Defines method to initiate a simulation (start)

All subclasses are potential transaction participants
m

start

I maxMMUs I
maxMMUs := 3.

simWindow :- (SimWindow new).

controller :- (CentraIController new)

setMaxMMUs: maxMMUs

andSimWindow: simWindow.

(MMU new)

setController: controller

andSimWindow: simWindow.

(MMU new)

setController: controller

andSimWindow: simWindow.

(MMU new)

setController: controller

andSimWindow: simWindow.

(simWindow openWith: controller).

L

MISSION

v.9

B-1 Draft

September 16, 1992

! SimWindow class methods !

new

^ (super new) init

L

! SimWindow methods !
u

EVACS Simulation in SmaUtalk

(SimWindow & Support)

Provides the display and interaction model for the simulation.

Creates the window; calls upon clients for subpane display and interaction

(SimDisplay and Simlnput). Handles message pane itself.

subclass to: Evacs. EvacsRoot

for Evacs : simWIndow controller

for SimWindow : topPane simDisplay simlnput msgStream crPrinted

init

simDisplay :- (SimDisplay new) initWith: self.

simlnput :- (Simlnput new) init.

crPrinted := false. " crPrinted is used by msgPane methods "

" continued "

MISSION

v,9

C-1 Draft

September 16, 1992

EVACS Simulation in Smalltalk

(SimWindow & Support)

"SimWindow methods continued"

openWith: acont r@ 11er

" creates topPane and 5 subPanes. Display area is divided generally into

3 areas: input, display (output) and message log. The input area is

further divided into a textDisplay pane and two button panes. The msgPane

takes up the entire right half of the display area. The displayPane takes

up the lower three quarters of the left half. The textDisplay for input

appears in the upper one eighth with the buttons directly under that. The

mode buttons take up three eights of the button space with the doit pane

filling the 1/8 X 1/8 space directly to the left of the mode bottons.

The doit pane is so named because these buttons initiate simulation

process ing.

II

I msgPane displayPane inputPane modePane doitPane

msgFrame displayFrame inputFrame modeFrame doitFrame i

controller := acontroller.

msgFrame := ((1/2) @ 0

displayFrame := (0 @ (1/4)

inputFrame := (0 @ 0

modeFrame := (0 @ (1/8)

doitFrame

extent: (1/2) @ 1).

extent: (1/2) @ (3/4)).

extent: (1/2) @ (1/8)).

extent: (3/8) @ (1/8)).

:= ((3/8) @ (1/8) extent: (1/8) @ (1/8)).

topPane

(topPane addSubpane:

(msgPane := (TextDisplayPane new)

(topPane addSubpane:

(displayPane:= (NoScrollGraphPane new)

(topPane addSubDane:

(inputPane := (TextDisplayPane new)

(topPane addSubpane:

(modePane := (ButtonPane new)

(topPane addSubpane:

(doit Pane

:= (TopPane new) label: 'Evacs Simulation'

framingRatio: msgFrame)).

framingRatio: displayFrame)).

framingRatio: inputFrame

framingRatio: modeFrame

:= (VerticalButtonPane new) framingRatio: doitFrame

)).

)).

)).

(msgPane model: self; name: #nullMsg).

msgStream := (msgPane dispatcher).

(simDisplay

openWith: displayPane).

(simInput

openWith: (Array with: inputPane with: modePane with: doitPane)

andController: controller andSimWindow: self).

((topPane dispatcher) open; scheduleWindow).

" continued "

MISSION
v.9

C-2 Draft

September 16, 1992

EVACS Simulation in Smalltalk

(SimWindow& Suppoff)

"SimWindow methods continued

SimWindow users, after creating the simWindow, must tell it about each MMU

created. Simlnput provides for simulation mode selection which can be queried

via the simMode method. Methods to handle msgPane provide an initial null

message and methods to add text. Changes to simulation frequencies are

announced via calls to the four <>Freq: methods.

: topPane simDisplay simlnput msgStream crPrinted
i,

addMMU

(simDisplay addMMU).

[

simMode

^ (simlnput mode)

[

nullMsg

^vw.

[

logText: aString

crPrinted ifFalse: [msgStream cr].

(msgStream nextPutAll: aString; cr).

crPrinted := true.

I

logNoCr: aString

(msgStream nextPutAll: (aString, ' ')).

crPrinted := false.

[

controllerFreq: aFreq

(simDisplay update: 'centralController' with: aFreq).

!

antennaMgrFreq: aFreq

(simDisplay update: "antennaMgr' with: aFreq).

antennaFreq: aFreq

for: antNum

I antName I

antName := ('antenna', (antNum printPaddedTo: I)),

(simDisplay update: antName with: (aFreq, ' OHz OHz')).

!

anMMUFreq: aFreq

(simDisplay update: 'MMUI' with: aFreq).

!!

MISSION C-3

v.9

Draft

September 16, 1992

EVACS Simulation in Smalltalk

(SimWindow & Support)

! SimDisplay class methods ! !

! SimDisplay methods !

" Handles display pane of simWindow, showing key simulation objects and their

status. Uses SimNodes to handle multiple display objects

subclass to: Evacs, EvacsRoot

for Evacs

: simWindow

for SimDispl ay

: displayPane displayForm mmuCnt simNodes

initWith: aSimWindow

" Creates nodes for central controller, antenna manager, and 3 antennas.

Divides display area (displayForm) into a 3X4 grid (horizontal X vertical).

Position code blocks return positions in the center of one of these cells.

] pos22 pos32 pos41 pos42 pos43 I

simWindow := aSimWindow.

mmuCnt := O.

pos22 := [((displayForm

pos32 := [((displayForm

pos41 := [((displayForm

pos42 := [((displayForm

pos43 := [((displayForm

simNodes :=

simNodes at:

((SimNode

width // 2) @ (displayForm height // 8 * 3))].

width // 2) @ (displayForm height // 8 * 5))].

width // 6) @ (displayForm height // 8 * 7))].

width // 6 * 3) @ (displayForm height // 8 * 7))],

width // 6 * 5) @ (displayForm height // 8 * 7))].

Dictionary new.

'centralController' put:

new) name: 'Central Controller';

freq:

simNodes at: 'antennaMgr'

((SimNode new) name:

freq:

simNodes at: 'antennal'

((SimNode new) name:

freq:

simNodes at: 'antenna2'

((SimNode new) name:

freq:

simNodes at: 'antenna3"

((SimNode new) name:

freq:

"continued"

'OHz'; locate: pos22).

put:

'Antenna Manager';

'OHz'; locate: pos32).

put:

'Anti';

"OHz OHz OHz'; locate: pos41),

put:

'Ant2';

'OHz OHz OHz'; locate: pos42).

put:

'Ant3';

'OHz OHz OHz'; locate: pos43).

MISSION

v.9
C-4 Draft

September 16, 1992

EVACS Simulation in Smalltalk

(SimWindow & Suppo_)

" SimDisplay methods continued

: simWindow displayPane displayForm mmuCnt simNodes

addMMU

" creates SimNode for an new MMU. MMUs are displayed in the first row of the

displayForm's 3X4 grid. mmuPos selects the horizontal position based on the

mmu's number, and always selects the first row.
u

[nameStr mmuNum mmuPos I

mmuNum := (mmuCnt := mmuCnt + 1).

nameStr := ('MMU', (mmuNum printPaddedTo: 1)).

mmuPos :- [((displayForm width // 6 * (mmuNum * 2 - 1))

@ (displayForm height // 8))].

simNodes at: nameStr put:

((SimNode new) name: nameStr;

freq: 'OHz'; locate: mmuPos).

openWith: aDisplayPane

displayPane := aDisplayPane model: self;

name: #displaySim:.

update: nodeName with: aFreq

((simNodes at: nodeName) freq: aFreq).

(displayPane update).

(simWindow logNoCr: (nodeName, ': ', (aFreq copyFrom: i to: 6))).

displaySim: framingRect

i aPen aFont J

displayForm := (Form width: (framingRect width)

height : (framingRect height)).

aFont := (Font applicationFont).

aPen := (Pen new: displayForm).

simNodes do: [:simNode I

(simNode drawUsing: aPen

font: aFont),].

^displayForrn.

MISSION

V.9

C'5 Draft

September 16, 1992

EVACS SimulafiontnSmalltalk

(SimWindow & Suppo_)

! Simlnput class methods ! l

! Simlnput methods !

" Handles input text and button panes of window, providing user control

over simulation

subclass to: Evacs, EvacsRoot

for Evacs

: simWindow controller

for SimInput

: inputPane modePane doitPane simMode
m

openWith: panesArray andController: aController

inputPane := (panesArray at: i)

model: self; name: #defaultlnput.

modePane := (panesArray at: 2)

model: self; buttons: #(Proper Improper ToughCase); push: 1.

doitPane := (panesArray at: 3)

model: self; buttons: #(ChangeFreq Prompt); pulse: true.

simWindow := aSimWindow.

controller := aController.

simMode := #proper.

defaultInput

^(('llllHz lll9Hz ll91Hz l199Hz

'9111Hz 9119Hz 9191Hz 9199Hz

breakLinesAtBackSlashes)

!

callC0ntroller: msg

"with transaction code..."

I success tm I

(sir_qindow logText: '').

(simWindow logText: ('initiating change to ', msg)).

tm :- TransactionManager runAsNewTransaction:

[controller changeFreq: msg]

id: 'simWindow->controller.changeFreq'

parent: nil receiver: controller simWindow: simWindow.

!

buttonPressed: aSymbol

(self perforra: aSymbol).

!

" continued ..."

andSimWindow: aSimWindow

1911Hz 1919Hz 1991Hz 1999Hz\',

9911Hz 9919Hz 9991Hz 9999Hz')

MISSION C-6

V.9

Draft

September 16, 1992

EVACS Simulation in Smalltalk

(SimWindow & SuppoH)

" Simlnput methods continued

: simWindow controller inputPane modePane doitPane simMode

Cha_ngeFreq

i inputString l

inputString := (inputPane selectedString).

((inputString size) = 6) ifTrue: [

(self callController: inputString).

]

ifFalse: [

(simWindow logText:

('You must select a frequency first, try again')).

]
l

Prompt

i inputString l

inputString :- (Prompter prompt: 'Please type desired frequency'

default: 'll4Hz').

(self callContro]]er: inputString).

Proper

simMode := #proper.

Improper

sin_Mode :- #improper.

!

ToughCase

simMode := #toughCase,

!

mode

^ simMode

MISSION C-7

v.9

Draft

September 16, 1992

EVACS Simulation in Smalltalk

(SimWindow & Support)

! SimNode class methods ! !

L SimNode methods !

" captures information about and draws nodes for SimWindow's displayPane

: name freq locateBlock
n

name: aString

name := aString.

!

freq: aString

freq := aString.

!

locate: aBlockReturnPoint

locateBlock :- aBlockReturnPoint.

I

drawUsing: aPen font: aFont

I centerPoint height width origin vOffset I

" draws a rectangle at centerPoint (calculated by locateBlock)

rectangle is two-line height and just wide enough for embedded text

SimNode name and frequceny are centered text items

vOffset is vertical offset from upper bound to text baseline

centerPoint := (locateBlock value).

width

height

origin

vOffset

:= ((name size) max: (freq size)) * (aFont width) + 15.

:= ((aFont height) * 2 + 15).

:= ((centerPoint x) - (width // 2))

@ ((centerPoint y) - (height // 2)).

:= ((aFont height) // 2 + 5).

(aPen drawRectangle: (origin extent: (width @ height))).

(aPen place: ((centerPoint x) @ ((origin y) + vOffset))).

(aPen centerText: name

font: aFont).

(aPen place: ((centerPoint x) @ ((centerPoint y) + vOffset))).

(aPen centerText: freq

font: aFont).

MISSION

v.9

C-8 Draft

September 16, 1992

EVACS Simulation in Smalltalk

(EVACS applicafon code)

!CentralController class methods ! !

!CentraIController methods L

" models the central controller (base station) for the Evacs application

subclass to: Evacs. subclass to: TransactionParticipant

for Transaction Participant

: currentTMs permanentStore status

for Evacs

: simWindow controller

for CentraIControll er

: mmuArray antennaMgr frequency

setMaxMMUs : maxMMUs

andSimWindow: aSimWi ndow

I antCnt I

mmuArray

antennaMgr

MMUsCount success

:= (Array new: maxMMUs).

:= (AntennaMgr new) setSimWindow: aSimWindow

andMaxMMUs: maxMMUs.

:= O. simWindow :- aSimWindow.

:= self. frequency :- 'OHz'.

mmusCount

controller

L

addState

(visibleState at: #controllerSlot

put: frequency).

(super addState).

L

restoreState

frequency := (visibleState at: #controllerSlot).

(super restoreState).

(simWindow controllerFreq: frequency).

prepared

i locaIResult I

locaIResult :- ((frequency at: i) < $5). "1st digit of frequency < 5"

((simWindow simMode) - #proper)

ifTrue: [^ success & locaIResult]

ifFalse: [A locaIResult].

!

registerMMU: mmu

mmusCount := mmusCount + 1.

(mmuArray at: mmusCount put: mmu).

(simWindow addMMU).

^ mmusCount

!

"continued"

MISSION D-1

v.9

Draft

September 16, 1992

EVACSSimulation in Smalltalk

(EVACS application code)

"CentralController methods continued"

changeFreq: newFreq

" Implements the essential function of EVACS sim, that of changing the

frequencies of the MMUs and antennas in a coordinated fashion. Changes

are implemented as transactions to ensure integrity. In the EVACS sim

this method is also called as a top-level transaction thus all

transactions here and subsequently created are sub-transactions.

R

I anMMU mmuNumtm anAntenna I

frequency := newFreq.

mmuNum := I.

anMMU := (mmuArray at: mmuNum).

success: = true.

((simWindow simMode) = #toughCase)

ifTrue: [

anAntenna := ((antennaMgr antennaArray) at: i).

tm := TransactionManager runAsNewTransaction:

[anAntenna changeFrequencyOfMMU: I to: newFreq]

id: 'controller=>anAntenna.changeFreq'

parent: (currentTMs readTop) receiver: anAntenna simWindow: simWindow.

success :- success & ((tm status) - #completed).

].

tm :- TransactionManager runAsNewTransaction:

[anMMU changeFrequencyTo: newFreq]

id: "controller=>anMMU.changeFreq'

parent: (currentTMs readTop) receiver: anMMU

success := success & ((tm status) - #completed).

simWindow: simWindow.

"to differentiate the MMUs from the antenna manager if the mmu fails, it

is renentered into the parent transaction with a dummy value of O00Hz
n

(success)

ifFalse: [

(anMMU enter: (currentTMs readTop)).

(anMMU changeFrequencyTo: 'O000Hz")].

tm := TransactionManager runAsNewTransaction:

[antennaMgr changeAntennasTo: newFreq for: mmuNum]

id: "controller->antennaMgr.changeFreq'

parent: (currentTMs readTop) receiver: antennaMgr simWindow: simWindow.

success := success & ((tm status) - #completed).

(simWindow controllerFreq: newFreq).

MISSION

v.9

D-2 Draft

September 16, 1992

EVACS Simulation in Smalltalk

(EVACS application code)

! MMU class methods ! !

! MMU methods !

" models behavior of an independent Manned Manuvering Unit

subclass of Evacs. subclass of TransactionParticipant

for TransactionParticipant

: currentTMs permanentStore status

for Evacs

: simWindow controller

for MMU

: number frequency

setController: theController

andSimWindow: theSimWindow

controller :- theController.

number := (controller registerMMU: self).

simWindow := theSimWindow.

frequency := 'OHz'.

addState

(visibleState at: #mmuSlot

put: frequency).

(super addState).

restoreState

frequency :- (visibleState at: #mmuSlot).

(super restoreState).

(simWindow anMMUFreq: frequency).

prepared

^ ((frequency at: 2) < $5).

changeFrequencyTo : newfrequency

frequency := newfrequency.

(simWindow anMMUFreq: frequency).

! !

MISSION

v.9

D-3 Draft

September 16, 1992

EVACS Simulation in SmaUtalk

_-VACS application code)

! AntennaMgr class methods ! !

! AntennaMgr methods !

" coordinates a collection of three antennas at the base station

subclass of Evacs, subclass of TransactionParticipant

for TransactionParticipant

: currentTMs permanentStore status

for Evacs

: simWindow controller

for antennaMgr

: antennaArray frequencyArray success
w

setSimWindow: aSimWindow

andMaxMMUs: maxMMUs

I anAntenna J

simWindow

ant ennaArray

:= aSim&qindow.

:= (Array with: (Antenna new)

with: (Antenna new)

with: (Antenna new)).

frequencyArray := (Array new: xMM s) atAllPut: '0Hz'

(1 to: 3) do: [:index l

anAntenna := (antennaArray at: index).

(anAntenna setMaxMMUs: maxMMUs

antNum: index

andS imWindow: simWindow) .

].

addState

(visibleState at: #antennaMgrSlot

put: (frequencyArray shallowCopy)).

(super addState).

restoreState

frequencyArray :- (visibleState at: #antennaMgrSlot).

(super restoreState).

(simWindow antennaMgrFreq: (frequencyArray at: i)).

prepared

l localResult l

locaIResult :- (((frequencyArray at: 1) at: 3) < $5).

((simWindow simMode) - #proper)

ifTrue: [^ success & locaIResult l

ifFalse: [^ locaIResult].

"continued"

MISSION

V.9

D-4 Draft

September 16, 1992

EVACS Simulation in Smalltalk

(EVACS application code)

"AntennaMgr methods continued"

antennaArray

^ antennaArray

changeAntennasTo: newFreq

for: anMMU

I tm anAntenna I

success :- true.

(frequencyArray at: anMMU put: newFreq).

(1 to: 3)

do: [:num I

anAntenna := (antennaArray at: hum).

tm := TransactionManager runAsNewTransaction:

[(anAntenna changeFrequencyOfMMU: i to: newFreq)]

id: ('antennaMgr=>anAntenna'.

(hum printPaddedTo: 1). '.changeFreq')

parent: (currentTMs readTop) receiver: anAntenna

simWindow: simWindow.

success := success & ((tm status) - #completed).

].

(simWindow antennaMgrFreq: newFreq).

MISSION

v.9

D-5 Draft

September 16, 1992

EVACS SimuladoninSmalltalk

(EVACS apphcation code)

L Antenna class methods ! L

! Antenna methods !

" models behavior of an independent antenna at the base station

subclass of Evacs. subclass of TransactionParticipant

for TransactionParticipant

: currentTMs permanentStore status

for Evacs

: simWindow controller

for Antenna

: frequencyArray
n

setMaxMMUs: maxMMUs

antNum; anlnt

andSimWindow: aWindow

antNum :- anlnt.

frequencyArray := (Array new: maxMMUs) atAllPut: 'OHz'.

simWindow := aWindow.

addState

(visibleState at: #antennaSlot

put: (frequencyArray shallowCopy)).

(super addState).

restoreState

frequencyArray := (visibleState at: #antennaSlot).

(super restoreState).

(simWindow antennaFreq: (frequencyArray at: i)

for: antNum).

prepared

^ (((frequencyArray at: i) at: 4) < $5).! [

L

changeFrequencyOfMMU: number to: frequency

(frequencyArray at: number put: frequency).

(simWindow antennaFreq: frequency

for: antNum).

MISSION D-6

v.9

Draft

September 16, 1992

EVACSSimulation in Smalltalk(

(Simulation Support)

!TextDisplayer class methods ! !

!TextDisplayer methods L

" modified TextPane dispatcher, method modify always returns false

(closing will not ask to have changes saved), no other changes

modified "user modification not significant"

^ false

! !

!TextDisplayPane class methods ! !

!TextDisplayPane methods !

" modified TextPane, defaultDispatcherClass returns TextDisplayer

no other changes

defaultDispatcherClass

^ TextDisplayer

MISSION E-1

v.9

Draft

September 16, 1992

EVACS Simula_on in Smalltalk(

(Simulation Suppo_)

i EvacsStack class methods ! i

! EvacsStack methods [

" subset of and renaming of orderedCollectior_ methods, no new representation
u

push: newObject

(super addFirst: newObject).

pop

^ (super removeFirst)

!

pushAll: aCollection

(super addAlIFirst: aCollection)

!

readTop

^ (contents at: startPosition).

![

MISSION E-2

v.9

Draft

September 16, 1992

! Checkpointable class methods

new ^(super new) init.

EVACS Simulation in Smalltalk

(Transaction Support)

{ Checkpointable methods !

" provides facility for saving an object's state & recovery states

: currentState recoveryStack visibleState
u

init

recoveryStack :- (EvacsStack new).

!

pushCheckpoint

visibleState := (Dictionary new).

(self addState).

(recoveryStack push: visibleState).

I

restoreCheckpoint

visibleState :- (recoveryStack pop).

(self restoreState).

L

discardCheckpoint

(recoveryStack pop).

L

saveCurrent

visibleState := (Dictionary new).

(self addState).

currentState :- visibleState.

!

restoreCurrent

visibleState :- currentState.

(self restoreState).

(L

MISSION F-1

v.9

Draft

September 16, 1992

EVACS Simulation in Smalltalk

(Transaction Support)

! TransactionManager class methods !

runAsNewTransaction: block

id: userId parent: parentTransaction

receiver: participantObject simWindow: aSimWindow

" Creates transaction, executes block within it and invokes completion

processing. Receiver must be object receiving message in block "

[newTM]

(aSimWindow logText: ('Beginning Transaction: ', userld)).

newTM := (super new)

initWithID: userld;

setParents: parentTransaction.

(participantObject enter: newTM).

(block value). "execute the transaction's code"

(newTM processingComplete).

(aSimWindow logText: (userld. ": '. (newTM status))).

^ newTM

! !

{ TransactionManager methods !

" serves to coordinate transaction 2-phase commit and abort

: id participants status transactionHierarchy subTs

initWithlD: userld

" sets user id (string) and initializes collection variables and status "

id :- userld.

subTs := (Bag new).

participants := (Set new).

status := #created.

setParents: parentTransaction

" sets transaction hierarchy, including all parents and itself "

transactionHierarchy := (EvacsStack new).

(parentTransaction notNil) ifTrue: [

(transactionHierarchy pushAll: (parentTransaction transactionHierarchy)).

(transactionHierarchy push: parentTransaction).

(parentTransaction registerSubTransaction: self)

].

transactionHierarchy

A transactionHierarchy

status

^ status

" continued... "

MISSION

v.9

F-2 Draft

September 16, 1992

EVACS Simulation in Smalltalk

(Transaction Support)

" transactionManager methods cont. "

processingCompl ere

" initiate two phase commit: send prepare message to all participants

if participants all prepared, commit and send complete messages "

I success parentTM I

status := #preparing.

success :- true. "for now"

participants do: [:participant I

success :- success & (participant prepareCommitment)].

(success)

ifTrue: [

status := #committed. " the binary arbiter of commitment "

parentTM :- (transactionHierarchy readTop).

participants do: [:participant I

(participant completeCommitment: parentTM)].

(parentTM notNil) ifTrue: [

(parentTM inheritParticipants: participants)].

status :- #completed.

]

ifFalse: [

status := #failed.

participants do: [:participant I (participant abandonTransaction)].

].

L

abort

" send abandonTransaction message to all participants "

status :- #aborted.

participants do: [:participant I

(participant abandonTransaction)].

L

registerParticipant : participantObject

(participants add: participantObject).

L

inheritParticipants: subTparticipants

(participants addAll: subTparticipants).

L

registerSubTransacti on : transacti onManager

(subTs add: transactionManager).

L !

MISSION F-3

v.9

Draft

September 16, 1992

EVACS SimulafloninSmalltalk

(Transaction Suppo_)

[TransactionParticipant class methods [!

! TransactionParticipant methods !

" provides protocol and representation for objects which participate in

transaction

: currentTMs status

m

init

currentTMs := (EvacsStack new).

status :- #free.

(super init).

!

addState

(visibleState at: #participantSlot

put: (Array with: status

with: currentTMs)).

!

restoreState

currentTMs := ((visibleState at: #participantSlot) at: 2).

status := ((visibleState at: #participantSlot) at: 1).

!

prepared "returns true if object is ready to commit"

"(self implementedBySubclass)."

^ true "by default"

!

"Continued"

MISSION F-4

v.9

Draft

September 16, 1992

EVACS SimulafioninSmalltalk

(Transac_on Suppo_)

"TransactionParticipant methods continued"

enter: enteredTM

"enter into transaction, if not current transaction save state"

((currentTMs readTop) _ enteredTM) ifTrue: [

(self pushCheckpoint). "recovery value"

(currentTMs push: enteredTM).

(enteredTM registerParticipant: self).

status := #inTransaction.

].

(self saveCurrent).

{

prepareCommitment

"check status, if ok prepare for commitment"

^ ((self prepared) ifTrue: [

(self saveCurrent).

status := #prepared.

];

yourself)

I

completeCommitment: parentTM

(currentTMs pop).

(parentTM isNil)

ifTrue: ["leave top transaction"

(self discardCheckpoint).

status := #free.

]

ifFalse: ["enter parent transaction"

((currentTMs readTop) = parentTM) ifTrue: [

(self discardCheckpoint).

]

ifFalse: [

(currentTMs push: parentTM).

].

].

(self saveCurrent).

!

abandonTransaction

(self restoreCheckpoint).

(self saveCurrent).

!L

MISSION F-5

v.9

Draft

September 16, 1992

EVACS Simulation in Smalltalk

(SmaUtalk Application Definition)

"construct application"

((Smalltalk at: #Application ifAbsent: [])

isKindOf: Class) ifTrue: [

((Smalltalk at: #Application) for:'.Evacs Sim')

addClass: EvacsRoot;

addClass: TransactionManager;

addClass: Checkpointable;

addClass: TransactionParticipant;

addClass: EvacsStack;

addClass: Evacs;

addClass: TextDisplayer;

addClass: TextDisplayPane;

addClass: SimWindow;

addClass: SimDisplay;

addClass: SimNode;

addClass: Simlnput;

addClass: CentralController;

addClass: MMU;

addClass: AntennaMgr;

addClass: Antenna;

comments: nil;

initCode: nil;

finalizeCode: nil;

startUpCode: nil

MISSION G-1

v.9

Draft

September 16, 1992

